### group : Thomson   Count = 11 J.J. Thomson (1904) asked: How do a small number of electrons arrange themselves on the surface of a unit sphere? Various algorithms are available for computing a solution as discussed in Wikipedia. see also POLYHEDRA IN PHYSICS, CHEMISTRY AND GEOMETRY Following the approach of pmoews on Thingiverse, these Polyhedra have been created by using the coordinates from The Cambridge Cluster Database, converting to the format required by Qhull to generate the faces and then converting to the XML format used for all solids. Currently all faces are triangles even when 4 or more points lie in a plane as they do on one face of Thomson 19. The duals of these solids have irregular square, pentagonal and hexagonal faces (use Conway formual dZ) . Search

Name Groups #Vertices Vertex orders #Faces Face orders #Edges Conway
Thomson 10  Thomson 10 8{5}+2{4} 16 16{3} 24
Thomson 11  Thomson 11 8{5}+1{6}+2{4} 18 18{3} 27
Thomson 12  Thomson 12 12{5} 20 20{3} 30
Thomson 13  Thomson 13 10{5}+2{6}+1{4} 22 22{3} 33
Thomson 14  Thomson 14 12{5}+2{6} 24 24{3} 36
Thomson 15  Thomson 15 12{5}+3{6} 26 26{3} 39
Thomson 16  Thomson 16 12{5}+4{6} 28 28{3} 42
Thomson 17  Thomson 17 5{6}+12{5} 30 30{3} 45
Thomson 18  Thomson 18 2{4}+8{6}+8{5} 32 32{3} 48
Thomson 19  Thomson 19 12{5}+7{6} 34 34{3} 51
Thomson 20  Thomson 20 8{6}+12{5} 36 36{3} 54